
mjb – December 28, 2023

1

Computer Graphics

Tessellation Shaders

tessellation.pptx

Mike Bailey

mjb@cs.oregonstate.edu

This work is licensed under a Creative Commons
Attribution-NonCommercial-NoDerivatives 4.0
International License

mjb – December 28, 2023

2

Computer Graphics

Tessellation Fun Facts

I once won an OpenGL t-shirt at the SIGGRAPH conference by knowing
how to correctly spell “tessellation”. (It’s 2 s’s and 2 l’s.)

Please don’t tell anyone. Spelling correctly undermines one’s CS credibility…

The only reason I knew it was that the week before I had been experimenting
with the newly-released tessellation shaders for the first time and my program
wouldn’t compile because I had misspelled tessellation. The week of the
conference, it was still fresh in my mind how to spell it correctly.

mjb – December 28, 2023

3

Computer Graphics

Why do we need a Tessellation step right in the pipeline?

• You can perform adaptive subdivision based on a variety of criteria (size, curvature,
etc.)

• You can provide coarser models, but have finer ones displayed (≈ geometric
compression)

• You can apply detailed displacement maps without supplying equally detailed
geometry

•You can apply detailed normal maps without supplying equally detailed geometry

• You can adapt visual quality to the required level of detail

• You can create smoother silhouettes

• You can do all of this, and someone else will supply the geometic patterns for you!

What built-in patterns can the Tessellation shaders produce?
Lines Quads (subsequently broken into triangles)Triangles

mjb – December 28, 2023

4

Computer Graphics

The Tessellation Shaders: Where Do they Fit in the Pipeline?

= Fixed Function

= Programmable

If in use, it is always
the first stop after
the Vertex Shader

If in use, it is always
the last stop before
the Rasterizer

mjb – December 28, 2023

5

Computer Graphics

Tessellation Shader Organization

One call per output vertex.
Consumes the entire patch.
Determines how much to tessellate.

One call per patch.
Tessellates the curve or
surface into uvw coordinates.

One call per generated uvw
vertex. Evaluate the curve
or surface. Possibly apply a
displacement map.

Transformed xyz Patch Vertices from
the Vertex Shader

New Patch Vertices in xyz, How much to tessellate,
Per-vertex attributes

P
at

ch
 V

er
ti

c
es

 a
n

d

P
er

-p
at

c
h

 A
tt

ri
b

u
te

s

uvw vertices for the tessellated primitives To
p

o
lo

g
y

xyz vertices

mjb – December 28, 2023

6

Computer Graphics

Tessellation Shader Organization

The Tessellation Control Shader (TCS) optionally can transform the input
coordinates (but usually doesn’t). It also computes the required tessellation level
based on distance to the eye, screen space spanning, hull curvature, or
displacement roughness. There is one TCS execution per vertex.

The Fixed-Function Tessellation Primitive Generator (TPG) generates semi-
regular u-v-w coordinates in specific patterns. (In fact, if it had been up to me, this
would have been called the Tessellation Pattern Generator. Nobody asked.)

The Tessellation Evaluation Shader (TES) Turns the TPG’s u-v-w coordinates
into x-y-z. It can apply displacements. There is one TES execution per generated
vertex.

There is a new “Patch” primitive:
glBegin(GL_PATCHES)

followed by some number of glVertex3f() calls. There is no implied purpose,
number of vertices, or vertex ordering – those are given by you in how you write
the shader.

mjb – December 28, 2023

7

Computer Graphics

glBegin(GL_PATCHES);
glVertex3f(…);
glVertex3f(…);

glEnd();

In the OpenGL Program

Check the OpenGL extension:
“GL_ARB_tessellation_shader”

GLuint tcs = glCreateShader(GL_TESS_CONTROL_SHADER);

GLuint tes = glCreateShader(GL_TESS_EVALUATION_SHADER);

These have no implied topology – they will
be given to you in an array. It’s up to your
shader to interpret the order

In GLSL:
#version 400
#ension GL_ARB_tessellation_shader : enable

glPatchParameteri(GL_PATCH_VERTICES, num); // # of vertices in each patch

mjb – December 28, 2023

8

Computer Graphics

TCS Inputs

gl_in[] is an array of structures:

struct
{

vec4 gl_Position;
float gl_PointSize;
float gl_ClipDistance[6];

} gl_in[];

gl_PatchVerticesIn is the number of vertices in each patch and the dimension of gl_in[]

gl_PrimitiveID is the number of primitives since the last glBegin() (the first one is #0)

gl_InvocationID tells you which vertex you are working on, This is the index into the
gl_in[] array.

mjb – December 28, 2023

9

Computer Graphics

TCS Outputs

gl_TessLevelOuter[4] is a built-in array containing up to 4 outside edges of
tessellation levels

gl_TessLevelInner[2] is a built-in array containing up to 2 inside edges of
tessellation levels

layout(vertices = n) out; Used to specify the number of vertices sent to the TPG

gl_out[] is an array of structures:

struct
{

vec4 gl_Position;
float gl_PointSize;
float gl_ClipDistance[6];

} gl_out[];

mjb – December 28, 2023

10

Computer Graphics

In the TCS

User-defined variables defined per-vertex are qualified as “out”

User-defined variables defined per-patch are qualified as “patch out”

Defining how many vertices this patch will use:

layout(vertices = 16) out;

mjb – December 28, 2023

11

Computer Graphics

TES Inputs

Reads one triplet of 0. <= (u,v,w) <= 1. coordinates in the built-in variable vec3 gl_TessCoord

User-defined variables defined per-vertex are qualified as “out”
User-defined variables defined per-patch are qualified as “patch out”

layout(, , , point_mode) in;

triangles

quads

isolines

equal_ spacing

fractional_ even _ spacing

fractional _odd_ spacing

ccw

cw

gl_in[] is an array of structures coming from the TCS:

struct
{

vec4 gl_Position;
float gl_PointSize;
float gl_ClipDistance[6];

} gl_in[];

mjb – December 28, 2023

12

Computer Graphics

Tessellation Primitive Pattern Generator (TPG)

• The TPG is “fixed-function”, i.e., you can’t change its operation except by setting
parameters

• The TPG consumes all vertices from the TCS and emits vertices for the triangles,
quads, or isolines patterns

• The TPG outputs a series of vertices as coordinates in barycentric, i.e., in terms of
the parameters (u,v,w)

• Really, only (u,v) are unique: for triangles w = 1. – u – v

• Just (u,v) are used for quads and isolines

Triangle
pattern

Quad
pattern

Isoline
pattern

mjb – December 28, 2023

13

Computer Graphics

(u=0,v=0) (u=1,v=0)

(u=1,v=1)(u=0,v=1)

OL1

O
L

0

O
L

2

OL3

IL0

IL
1

u

v

TES Output Topologies: the Quad Pattern

gl_TessLevelOuter[4] is an array containing up to 4 outside edges of tessellation levels.
gl_TessLevelInner[2] is an array containing up to 2 inside edges of tessellation levels.

mjb – December 28, 2023

14

Computer Graphics

(u=0,v=0) (u=1,v=0)

(u=1,v=1)(u=0,v=1)

OL1

O
L

0

u

v

TES Output Topologies: the Isolines Pattern

Top line not drawn

OL0 == 1 implies that you just
want to draw a single curve

gl_TessLevelOuter[4] is an array containing up to 4 outside edges of tessellation levels.
gl_TessLevelInner[2] is an array containing up to 2 inside edges of tessellation levels.

mjb – December 28, 2023

15

Computer Graphics

(u=0,v=1,w=0)

(u=0,v=0,w=1) (u=1,v=0,w=0)
OL1

IL0

u

v

w

How triangle
barycentric
coordinates work

TES Output Topologies: the Triangle Pattern

u + v + w = 1

u + v + w = 1

gl_TessLevelOuter[4] is an array containing up to 4 outside edges of tessellation levels.
gl_TessLevelInner[2] is an array containing up to 2 inside edges of tessellation levels.

mjb – December 28, 2023

16

Computer Graphics

Examples

In these examples:

1. I am using glman to run them. The only necessary input files are the
glman .glib file and the shader files. If you aren’t using glman, you can do
this from a full OpenGL program.

2. All of the surface examples use the Geometry Shader triangle-shrink
shader. This isn’t necessary, but is educational to really see how the
surfaces have been tessellated.

mjb – December 28, 2023

17

Computer Graphics

Example: A Bézier Curve

P0

P1

P2

P3

Need to pass 4 points in to define the curve. Need to pass N
points out to draw the curve as a line strip.

u

mjb – December 28, 2023

18

Computer Graphics

Example: A Bézier Curve

1. You program the Tessellation Control Shader to decide how much
to tessellate the curve based on screen area, curvature, etc.

Can even tessellate non-uniformly if you want, such as using
more points where the curvature is higher

The OpenGL tessellation can do 1D curves. Just set OL0 == 1.

u

mjb – December 28, 2023

19

Computer Graphics

Example: A Bézier Curve

2. The Tessellation Primitive Generator generates u values for
as many subdivisions as the TCS asked for.

u

mjb – December 28, 2023

20

Computer Graphics

Example: A Bézier Curve

3 2 2 3
0 1 2 3() (1) 3 (1) 3 (1)P u u P u u P u u P u P

3. The Tessellation Evaluation Shader computes the x,y,z
coordinates based on the TPG’s u values and P0, P1, P2, and P3.

u

mjb – December 28, 2023

21

Computer Graphics

glPatchParameteri(GL_PATCH_VERTICES, 4);

glBegin(GL_PATCHES);
glVertex3f(x0, y0, z0);
glVertex3f(x1, y1, z1);
glVertex3f(x2, y2, z2);
glVertex3f(x3, y3, z3);

glEnd();

In an OpenGL Program

Pattern.Init();
Pattern.Create(“pattern.vert”, “pattern.tcs”, “pattern.tes”, “pattern.frag”);
Pattern.SetUniformVariable(“uOuter0”, 20);
Pattern.SetUniformVariable(“uOuter1”, 10);

In InitGraphics():

In Display():

mjb – December 28, 2023

22

Computer Graphics

##OpenGL GLIB
Perspective 70

Vertex beziercurve.vert
Fragment beziercurve.frag
TessControl beziercurve.tcs
TessEvaluation beziercurve.tes
Program BezierCurve uOuter0 <0 1 5> uOuter1 <3 5 50>

Color 1. .5 0. 1.

NumPatchVertices 4
glBegin gl_patches

glVertex 0. 0. 0.
glVertex 1. 1. 1.
glVertex 2. 1. 0.
glVertex 3. 0. 1.

glend

In a .glib File

mjb – December 28, 2023

23

Computer Graphics

In the TCS Shader

#version 400
#ension GL_ARB_tessellation_shader: enable

uniform int uOuter0, uOuter1;

layout(vertices = 4) out;

void
main()
{

gl_out[gl_InvocationID].gl_Position = gl_in[gl_InvocationID].gl_Position;

gl_TessLevelOuter[0] = float(uOuter0);
gl_TessLevelOuter[1] = float(uOuter1);

}

mjb – December 28, 2023

24

Computer Graphics

In the TES Shader

#version 400
#ension GL_ARB_tessellation_shader: enable

layout(isolines, equal_spacing) in;

void
main()
{

vec4 p0 = gl_in[0].gl_Position;
vec4 p1 = gl_in[1].gl_Position;
vec4 p2 = gl_in[2].gl_Position;
vec4 p3 = gl_in[3].gl_Position;

float u = gl_TessCoord.x;

// the basis functions:

float b0 = (1.-u) * (1.-u) * (1.-u);
float b1 = 3. * u * (1.-u) * (1.-u);
float b2 = 3. * u * u * (1.-u);
float b3 = u * u * u;

gl_Position = b0*p0 + b1*p1 + b2*p2 + b3*p3;
}

Assigning the intermediate pi’s is here to make the code more readable.
From what I have seen, the compiler will optimize this away.

mjb – December 28, 2023

25

Computer Graphics

Example: A Bézier Curve

Outer1 = 5

Outer1 = 50

mjb – December 28, 2023

26

Computer Graphics

Example: A Bézier Surface

P00
P10

P20

P30

P31

P32

P33

P12
P22

P23
P13

P03

P02

P01

P11
P21

u

v

mjb – December 28, 2023

27

Computer Graphics

3
00 01 02 03

2
10 11 12 133 2 2 3

2
20 21 22 23

3
30 31 32 33

(1)

3 (1)
(,) (1) 3 (1) 3 (1)

3 (1)

P P P P v

P P P P v v
P u v u u u u u u

P P P P v v

P P P P v

Bézier Surface Parametric Equations

mjb – December 28, 2023

28

Computer Graphics

glPatchParameteri(GL_PATCH_VERTICES, 16);

glBegin(GL_PATCHES);
glVertex3f(x00, y00, z00);
glVertex3f(x10, y10, z10);
glVertex3f(x20, y20, z20);
glVertex3f(x30, y30, z30);
glVertex3f(x01, y01, z01);
glVertex3f(x11, y11, z11);
glVertex3f(x21, y21, z21);
glVertex3f(x31, y31, z31);
glVertex3f(x02, y02, z02);
glVertex3f(x12, y12, z12);
glVertex3f(x22, y22, z22);
glVertex3f(x32, y32, z32);
glVertex3f(x03, y03, z03);
glVertex3f(x13, y13, z13);
glVertex3f(x23, y23, z23);
glVertex3f(x33, y33, z33);

glEnd();

This order is not set by OpenGL. It is set by you.
Pick a convention yourself and stick to it!

GLSL doesn’t care as long as you are consistent.

In an OpenGL Program

mjb – December 28, 2023

29

Computer Graphics

##OpenGL GLIB
Perspective 70

Vertex beziersurface.vert
Fragment beziersurface.frag
TessControl beziersurface.tcs
TessEvaluation beziersurface.tes
Geometry beziersurface.geom
Program BezierSurface uOuter02 <1 10 50> uOuter13 <1 10 50> uInner0 <1 10 50> uInner1 <1 10 50> \

uShrink <0. 1. 1.> \
u LightX <-10. 0. 10.> u LightY <-10. 10. 10.> uLightZ <-10. 10. 10. >

Color 1. 1. 0. 1.

NumPatchVertices 16

glBegin gl_patches
glVertex 0. 2. 0.
glVertex 1. 1. 0.
glVertex 2. 1. 0.
glVertex 3. 2. 0.

glVertex 0. 1. 1.
glVertex 1. -2. 1.
glVertex 2. 1. 1.
glVertex 3. 0. 1.

glVertex 0. 0. 2.
glVertex 1. 1. 2.
glVertex 2. 0. 2.
glVertex 3. -1. 2.

glVertex 0. 0. 3.
glVertex 1. 1. 3.
glVertex 2. -1. 3.
glVertex 3. -1. 3.

glEnd

In the .glib File

mjb – December 28, 2023

30

Computer Graphics

In the TCS Shader

#version 400
#extension GL_ARB_tessellation_shader : enable

uniform float uOuter02, uOuter13, uInner0, uInner1;

layout(vertices = 16) out;

void
main()
{

gl_out[gl_InvocationID].gl_Position = gl_in[gl_InvocationID].gl_Position;

gl_TessLevelOuter[0] = gl_TessLevelOuter[2] = uOuter02;
gl_TessLevelOuter[1] = gl_TesslevelOuter[3] = uOuter13;
gl_TessLevelInner[0] = uInner0;
gl_TessLevelInner[1] = uInner1;

}

mjb – December 28, 2023

31

Computer Graphics

In the TES Shader
#version 400 compatibility
#extension GL_ARB_tessellation_shader : enable

layout(quads, equal_spacing, ccw) in;

out vec3 teNormal;

void main()
{

vec4 p00 = gl_in[0].gl_Position;
vec4 p10 = gl_in[1].gl_Position;
vec4 p20 = gl_in[2].gl_Position;
vec4 p30 = gl_in[3].gl_Position;
vec4 p01 = gl_in[4].gl_Position;
vec4 p11 = gl_in[5].gl_Position;
vec4 p21 = gl_in[6].gl_Position;
vec4 p31 = gl_in[7].gl_Position;
vec4 p02 = gl_in[8].gl_Position;
vec4 p12 = gl_in[9].gl_Position;
vec4 p22 = gl_in[10].gl_Position;
vec4 p32 = gl_in[11].gl_Position;
vec4 p03 = gl_in[12].gl_Position;
vec4 p13 = gl_in[13].gl_Position;
vec4 p23 = gl_in[14].gl_Position;
vec4 p33 = gl_in[15].gl_Position;

float u = gl_TessCoord.x;
float v = gl_TessCoord.y; Assigning the intermediate pij’s is here to make the code more

readable. From what I’ve seen, the compiler will optimize this away.

mjb – December 28, 2023

32

Computer Graphics

In the TES Shader –
Computing the Position, given a u and v// the basis functions:

float bu0 = (1.-u) * (1.-u) * (1.-u);
float bu1 = 3. * u * (1.-u) * (1.-u);
float bu2 = 3. * u * u * (1.-u);
float bu3 = u * u * u;

float dbu0 = -3. * (1.-u) * (1.-u);
float dbu1 = 3. * (1.-u) * (1.-3.*u);
float dbu2 = 3. * u * (2.-3.*u);
float dbu3 = 3. * u * u;

float bv0 = (1.-v) * (1.-v) * (1.-v);
float bv1 = 3. * v * (1.-v) * (1.-v);
float bv2 = 3. * v * v * (1.-v);
float bv3 = v * v * v;

float dbv0 = -3. * (1.-v) * (1.-v);
float dbv1 = 3. * (1.-v) * (1.-3.*v);
float dbv2 = 3. * v * (2.-3.*v);
float dbv3 = 3. * v * v;

// finally, we get to compute something:

gl_Position = bu0 * (bv0*p00 + bv1*p01 + bv2*p02 + bv3*p03)
+ bu1 * (bv0*p10 + bv1*p11 + bv2*p12 + bv3*p13)
+ bu2 * (bv0*p20 + bv1*p21 + bv2*p22 + bv3*p23)
+ bu3 * (bv0*p30 + bv1*p31 + bv2*p32 + bv3*p33

mjb – December 28, 2023

33

Computer Graphics

In the TES Shader –
Computing the Normal, given a u and v

vec4 dpdu = dbu0 * (bv0*p00 + bv1*p01 + bv2*p02 + bv3*p03)
+ dbu1 * (bv0*p10 + bv1*p11 + bv2*p12 + bv3*p13)
+ dbu2 * (bv0*p20 + bv1*p21 + bv2*p22 + bv3*p23)
+ dbu3 * (bv0*p30 + bv1*p31 + bv2*p32 + bv3*p33);

vec4 dpdv = bu0 * (dbv0*p00 + dbv1*p01 + dbv2*p02 + dbv3*p03)
+ bu1 * (dbv0*p10 + dbv1*p11 + dbv2*p12 + dbv3*p13)
+ bu2 * (dbv0*p20 + dbv1*p21 + dbv2*p22 + dbv3*p23)
+ bu3 * (dbv0*p30 + dbv1*p31 + dbv2*p32 + dbv3*p33);

teNormal = normalize(cross(dpdu.xyz, dpdv.xyz));
}

Tangent Vectors obtained by differentiating
the position equation with respect to u and v:

Vector cross product to get the perpendicular
normal to the two tangent vectors.

mjb – December 28, 2023

34

Computer Graphics

uOuter02 = uOuter13 = 5
uInner0 = uInner1 = 5

uOuter02 = uOuter13 = 10
uInner0 = uInner1 = 5

uOuter02 = uOuter13 = 10
uInner0 = uInner1 = 10

Example: A Bézier Surface

mjb – December 28, 2023

35

Computer Graphics

uOuter02 = uOuter13 = 10
uInner0 = uInner1 = 10

uOuter02 = uOuter13 = 30
uInner0 = uInner1 = 10

Tessellation Levels and Smooth Shading

Smoothing the edge boundaries is one of the reasons that you
can set Outer and Inner tessellation levels separately

mjb – December 28, 2023

36

Computer Graphics

Example: Whole-Sphere Subdivision

##OpenGL GLIB

Vertex spheresubd.vert
Fragment spheresubd.frag
TessControl spheresubd.tcs
TessEvaluation spheresubd.tes
Geometry spheresubd.geom
Program SphereSubd \

uDetail <1 30 200> \
uScale <0.1 1. 10.> \
uShrink <0. 1. 1.> \
uFlat <false> \
uColor {1. 1. 0. 0.} \
uLightX <-10. 5. 10.> uLightY <-10. 10. 10.> uLightZ <-10. 10. 10.>

Color 1. 1. 0.

NumPatchVertices 1

glBegin gl_patches
glVertex 0. 0. 0. .2
glVertex 0. 1. 0. .3
glVertex 0. 0. 1. .4

glEnd

spheresubd.glib

Using the x, y, z, and w to specify the
center and radius of the sphere

mjb – December 28, 2023

37

Computer Graphics

Example: Whole-Sphere Subdivision

#version 400 compatibility

out vec3 vCenter;
out float vRadius;

void
main()
{

vCenter = gl_Vertex.xyz;
vRadius = gl_Vertex.w;

gl_Position = vec4(0., 0., 0., 1.);
// doesn’t matter now – we will fill in the coords later

}

spheresubd.vert

Using the x, y, z, and w to specify the
center and radius of the sphere

mjb – December 28, 2023

38

Computer Graphics

Example: Whole-Sphere Subdivision

#version 400 compatibility
#extension GL_ARB_tessellation_shader : enable

in float vRadius[];
in vec3 vCenter[];

patch out float tcRadius;
patch out vec3 tcCenter;

uniform float uDetail;
uniform float uScale;

layout(vertices = 1) out;

void
main()
{

gl_out[gl_InvocationID].gl_Position = gl_in[0].gl_Position; // (0,0,0,1)

tcCenter = vCenter[0];
tcRadius = vRadius[0];

gl_TessLevelOuter[0] = 2.;
gl_TessLevelOuter[1] = uScale * tcRadius * uDetail;
gl_TessLevelOuter[2] = 2.;
gl_TessLevelOuter[3] = uScale * tcRadius * uDetail;
gl_TessLevelInner[0] = uScale * tcRadius * uDetail;
gl_TessLevelInner[1] = uScale * tcRadius * uDetail;

}

spheresubd.tcs

Using the scale and the
radius to help set the
tessellation detail

Outer[0] and Outer[2] are the number
of divisions at the poles. Outer[1] and
Outer[3] are the number of divisions
at the vertical seams. Inner[0] and
Inner[1] are the inside sphere detail.

mjb – December 28, 2023

39

Computer Graphics

Example: Whole-Sphere Subdivision

#version 400 compatibility
#extension GL_ARB_tessellation_shader : enable

uniform float uScale;

layout(quads, equal_spacing, ccw) in;

patch in float tcRadius;
patch in vec3 tcCenter;

out vec3 teNormal;

const float PI = 3.14159265;

void main()
{

vec3 p = gl_in[0].gl_Position.xyz;

float u = gl_TessCoord.x;
float v = gl_TessCoord.y;

float phi = PI * (u - .5);
float theta = 2. * PI * (v - .5);

float cosphi = cos(phi);
vec3 xyz = vec3(cosphi*cos(theta), sin(phi), cosphi*sin(theta));
teNormal = xyz;

xyz *= (uScale * tcRadius);
xyz += tcCenter;

gl_Position = gl_ModelViewMatrix * vec4(xyz,1.);
}

spheresubd.tes

Turning u and v into
spherical coordinates

2 2

mjb – December 28, 2023

40

Computer Graphics

Example: Whole-Sphere Subdivision

Detail=50, Scale=1.

Detail=30, Scale=1.

Detail=50, Scale=2.5

mjb – December 28, 2023

41

Computer Graphics

Making the Whole-Sphere Subdivision Adapt to Screen Coverage, I

#version 400 compatibility
#extension GL_ARB_tessellation_shader : enable

in float vRadius[];
in vec3 vCenter[];

patch out float tcRadius;
patch out vec3 tcCenter;

uniform float uDetail;

layout(vertices = 1) out;

void main()
{

gl_out[gl_InvocationID].gl_Position = gl_in[0].gl_Position; // (0,0,0,1)

tcCenter = vCenter[0];
tcRadius = vRadius[0];

vec4 mx = vec4(vCenter[0] - vec3(vRadius[0], 0., 0.), 1.);
vec4 px = vec4(vCenter[0] + vec3(vRadius[0], 0., 0.), 1.);
vec4 my = vec4(vCenter[0] - vec3(0., vRadius[0], 0.), 1.);
vec4 py = vec4(vCenter[0] + vec3(0., vRadius[0], 0.), 1.);
vec4 mz = vec4(vCenter[0] - vec3(0., 0., vRadius[0]), 1.);
vec4 pz = vec4(vCenter[0] + vec3(0., 0., vRadius[0]), 1.);

sphereadapt.tcs, I

Extreme points of the sphere

mjb – December 28, 2023

42

Computer Graphics

mx = gl_ModelViewProjectionMatrix * mx;
px = gl_ModelViewProjectionMatrix * px;
my = gl_ModelViewProjectionMatrix * my;
py = gl_ModelViewProjectionMatrix * py;
mz = gl_ModelViewProjectionMatrix * mz;
pz = gl_ModelViewProjectionMatrix * pz;

mx.xy /= mx.w;
px.xy /= px.w;
my.xy /= my.w;
py.xy /= py.w;
mz.xy /= mz.w;
pz.xy /= pz.w;

float dx = distance(mx.xy, px.xy);
float dy = distance(my.xy, py.xy);
float dz = distance(mz.xy, pz.xy);
float dmax = sqrt(dx*dx + dy*dy + dz*dz);

gl_TessLevelOuter[0] = 2.;
gl_TessLevelOuter[1] = dmax * uDetail;
gl_TessLevelOuter[2] = 2.;
gl_TessLevelOuter[3] = dmax * uDetail;
gl_TessLevelInner[0] = dmax * uDetail;
gl_TessLevelInner[1] = dmax * uDetail;

}

sphereadapt.tcs, II

We no longer use uScale or tcRadius. But,
we do use uDetail to provide a way to
convert from NDC to Screen Space or to
indicate the quality you’d like

(I.e., uDetail depends on how good you
want the spheres to look and on how large
the window is in pixels.)

Extreme points of the sphere in Clip space

Extreme points of the sphere in NDC space

How long are the lines between the extreme points?

Making the Whole-Sphere Subdivision Adapt to Screen Coverage, II

mjb – December 28, 2023

43

Computer Graphics

#version 400 compatibility
#extension GL_ARB_tessellation_shader : enable

layout(quads, equal_spacing, ccw) in;

patch in float tcRadius;
patch in vec3 tcCenter;

out vec3 teNormal;

const float PI = 3.14159265;

void main()
{

vec3 p = gl_in[0].gl_Position.xyz;

float u = gl_TessCoord.x;
float v = gl_TessCoord.y;
float w = gl_TessCoord.z;

float phi = PI * (u - .5);
float theta = 2. * PI * (v - .5);

float cosphi = cos(phi);
vec3 xyz = vec3(cosphi*cos(theta), sin(phi), cosphi*sin(theta));
teNormal = xyz;

xyz *= tcRadius;
xyz += tcCenter;

gl_Position = gl_ModelViewMatrix * vec4(xyz,1.);
}

sphereadapt.tes

No longer uses uScale

2 2

Spherical coordinates

Making the Whole-Sphere Subdivision Adapt to Screen Coverage, III

mjb – December 28, 2023

44

Computer Graphics

Original Triangles Shrunk Zoomed In

Zoomed Out Rotated

Notice that the number of
triangles adapts to the screen
coverage of each sphere, and
that the size of the tessellated
triangles stays about the
same, regardless of radius or
transformation

Making the Whole-Sphere Subdivision Adapt to Screen Coverage, IV

mjb – December 28, 2023

45

Computer Graphics

Example: PN Triangles

General idea: turn each triangle into
a triangular Bézier patch. Create
the Bézier control points by using
the surface normals at the corner
vertices. The Bézier patch equation
can then be interpolated to any level
of tessellation.

Observation: triangles are usually passed in with points (P) and normals (N). Using this method,
those triangles can be broken into a series of smoother triangles internally. AMD actually had
this in their firmware before tessellation shaders made it unnecessary.

Alex Vlachos, Jörg Peters, Chas Boyd, and Jason Mitchell, “Curved PN Triangles”, Proceedings of
the 2001 Symposium on Interactive 3D Graphics, pp.159 – 166.

mjb – December 28, 2023

46

Computer Graphics

Example: PN Triangles

#version 400 compatibility
uniform float uScale;
out vec3 vNormal;
void main()
{

vec3 xyz = gl_Vertex.xyz;
xyz *= uScale;
gl_Position = gl_ModelViewMatrix * vec4(xyz, 1.);
vNormal = normalize(gl_NormalMatrix * gl_Normal);

}

pntriangles.vert

#version 400 compatibility
#ension GL_ARB_tessellation_shader : enable
uniform int uOuter, uInner;
uniform float uScale;
layout(vertices = 3) out;
in vec3 vNormal[];
out vec3 tcNormals[];

void main()
{

teNormals[gl_InvocationID] = vNormal[gl_InvocationID];
gl_out[gl_InvocationID].gl_Position = gl_in[gl_InvocationID].gl_Position;

gl_TessLevelOuter[0] = uScale * float(uOuter);
gl_TessLevelOuter[1] = uScale * float(uOuter);
gl_TessLevelOuter[2] = uScale * float(uOuter);
gl_TessLevelInner[0] = uScale * float(uInner);

}

pntriangles.tcs

mjb – December 28, 2023

47

Computer Graphics

Example: PN Triangles

#version 400 compatibility
#ension GL_ARB_tessellation_shader : enable
in vec3 tcNormals[];
out vec3 teNormal;
layout(triangles, equal_spacing, ccw) in;

void main()
{

vec3 p1 = gl_in[0].gl_Position.xyz;
vec3 p2 = gl_in[1].gl_Position.xyz;
vec3 p3 = gl_in[2].gl_Position.xyz;

vec3 n1 = tcNormals[0];
vec3 n2 = tcNormals[1];
vec3 n3 = tcNormals[2];

float u = gl_TessCoord.x;
float v = gl_TessCoord.y;
float w = gl_TessCoord.z;

vec3 b300 = p1;
vec3 b030 = p2;
vec3 b003 = p3;

float w12 = dot(p2 - p1, n1);
float w21 = dot(p1 - p2, n2);
float w13 = dot(p3 - p1, n1);
float w31 = dot(p1 - p3, n3);
float w23 = dot(p3 - p2, n2);
float w32 = dot(p2 - p3, n3);

pntriangles.tes, I

mjb – December 28, 2023

48

Computer Graphics

Example: PN Triangles
vec3 b210 = (2.*p1 + p2 - w12*n1) / 3.;
vec3 b120 = (2.*p2 + p1 - w21*n2) / 3.;
vec3 b021 = (2.*p2 + p3 - w23*n2) / 3.;
vec3 b012 = (2.*p3 + p2 - w32*n3) / 3.;
vec3 b102 = (2.*p3 + p1 - w31*n3) / 3.;
vec3 b201 = (2.*p1 + p3 - w13*n1) / 3.;

vec3 ee = (b210 + b120 + b021 + b012 + b102 + b201) / 6.;
vec3 vv = (p1 + p2 + p3) / 3.;
vec3 b111 = ee + (ee - vv) / 2.;

vec3 xyz = 1.*b300*w*w*w + 1.*b030*u*u*u + 1.*b003*v*v*v +
3.*b210*u*w*w + 3.*b120*u*u*w + 3.*b201*v*w*w +
3.*b021*u*u*v + 3.*b102*v*v*w + 3.*b012*u*v*v +
6.*b111*u*v*w;

float v12 = 2. * dot(p2-p1, n1+n2) / dot(p2-p1, p2-p1);
float v23 = 2. * dot(p3-p2, n2+n3) / dot(p3-p2, p3-p2);
float v31 = 2. * dot(p1-p3, n3+n1) / dot(p1-p3, p1-p3);

vec3 n200 = n1;
vec3 n020 = n2;
vec3 n002 = n3;
vec3 n110 = normalize(n1 + n2 - v12*(p2-p1));
vec3 n011 = normalize(n2 + n3 - v23*(p3-p2));
vec3 n101 = normalize(n3 + n1 - v31*(p1-p3));
Normal = n200*w*w + n020*u*u + n002*v*v +

n110*w*u + n011*u*v + n101*w*v;

gl_Position = vec4(xyz, 1.);
}

pntriangles.tes, II

mjb – December 28, 2023

49

Computer Graphics

Example: PN Triangles

#version 400 compatibility
#ension GL_gpu_shader4: enable
#ension GL_geometry_shader4: enable

uniform float uShrink;
in vec3 teNormal[];
out float gLightIntensity;
const vec3 LIGHTPOS = vec3(5., 10., 10.);

vec3 V[3];
vec3 CG;

void
ProduceVertex(int v)
{

gLightIntensity = abs(dot(normalize(LIGHTPOS - V[v]), normalize(teNormal[v]))
);

gl_Position = gl_ProjectionMatrix * vec4(CG + uShrink * (V[v] - CG), 1.);
EmitVertex();

}

void main()
{

V[0] = gl_PositionIn[0].xyz;
V[1] = gl_PositionIn[1].xyz;
V[2] = gl_PositionIn[2].xyz;

CG = (V[0] + V[1] + V[2]) / 3.;

ProduceVertex(0);
ProduceVertex(1);
ProduceVertex(2);

}

pntriangles.geom

mjb – December 28, 2023

50

Computer Graphics

Example: PN Triangles

#version 400 compatibility

in float gLightIntensity;

const vec3 COLOR = vec3(1., 1., 0.);

void
main()
{

gl_FragColor = vec4(gLightIntensity*COLOR, 1.);
}

pntriangles.frag

mjb – December 28, 2023

51

Computer Graphics

uOuter = 1, uInner = 1

uOuter = 2, uInner = 1

uOuter = 2, uInner = 2

uOuter = 2, uInner = 2

Notice how much improvement there is just
by increasing the outer tessellation. This is
because smooth shading already helps the
inner parts of triangles, but does nothing
for the silhouettes.

The Cow’s Tail is a Good Example of using PN Triangles

mjb – December 28, 2023

52

Computer Graphics

The Difference Between Tessellation
Shaders and Geometry Shaders

By now, you are probably confused about when to use a Geometry Shader and when
to use a Tessellation Shader. Both are capable of creating new geometry from
existing geometry. See if this helps.

Use a Geometry Shader when:

1. You need to convert an input topology into a different output topology, such
as in the silhouette and hedgehog shaders (triangles→lines) or the
explosion shader (triangles→points)

2. You need some sort of geometry processing to come after the Tessellation
Shader (such as how the shrink shader was used).

Use a Tessellation Shader when:

1. One of the built-in tessellation patterns will suit your needs.

2. You need more than 6 input vertices to define the surface being tessellated.

3. You need more output vertices than a Geometry Shader can provide.

mjb – December 28, 2023

53

Computer Graphics

Demonstrating the Limits of Tessellation Shaders

This tessellation is using 64x64 (the
maximum allowed).

This is pretty good-looking, but doesn’t
come close to using the full 4096x2276
resolution available for the bump-map.

